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Abstract

The huge volume of available video content calls for methods that offer in-
sight to the content without necessitating burdensome users’ extra effort or
being applicable to specific types or conditions. Based on experimentation
on collective users’ interactions on a controlled user-experiment, this work
analyses the results collected following the argument that bell-shaped refer-
ence patterns are shown to significantly correlate with scenes of interest for
each video, as designated by the viewers. Though, in order to ensure the cor-
relation of results to bell-shaped reference patterns, aggregation of a number
of users’ interactions is required. In order to overcome such an impediment
and adhere to a real-case cold start scenario, we propose a stochastic trans-
formation of the aggregated users’ interaction signal into a space defined by
its correlation to the bell-shaped reference patterns that is shown to offer
significant amelioration as to the percentage of users’ interaction required in
order to achieve comparable results to the original users’ interaction space.
Moreover, to ensure further the realistic character of the proposed scenario,
given an amount of already collected users’ interaction, the interaction of new
users’ is shown to be predictable using neural network time series prediction
and modeling methods. The results received indicate increased accuracy on
how one can predict the most important scenes from low quantity early data
of users’ interactions as well as future interaction of unique users. In practice,
the proposed techniques might improve both navigation within videos on the
web as well as video search results with personalised video thumbnails.
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1. Introduction

Nowadays, video content consumption and creation is easier than ever.
On one side, widespread penetration of fast and highly interactive internet
allows for an ever increasing number of users enjoying video content while on
the other hand affordable storage as well as high-quality capturing devices
have made creating such content an ubiquitous process with unprecedent-
edly high demand. The most popular web streaming video content service,
YouTube [16], serves more than 1 billion unique users per month, while stor-
ing 100 hours of video every minute [17]. Accordingly, being able to make
sense of the available content in a computerised manner, that is, being able
to extract new and interesting information that is otherwise very difficult to
be done due to the sheer volume of data, is of paramount importance.

Traditional content-based methodologies for the aforementioned data min-
ing processes examine the actual content of each video in order to extract
information. Nevertheless, their performance and capabilities fall short in
certain occasions and thus research has recently focused on contextual or
user-based semantics1. Such semantics rely on a broad spectrum of inter-
active behavior and “social activities” users exhibit and perform in relation
to video content consumption such as sharing with others, assigning com-
ments/tags, producing replies by means of other videos or even just express-
ing their preference/rating on the content. Rich as these “social metadata”
may be, they have also been critiqued [2] as offering extra burden in the
usual content consumption process that mainly includes viewing and brows-
ing, by necessitating extra user effort, leading to the long-tail effect as to
their existence. Thus, “social metadata” aside, research [8, 11] has exam-
ined the interaction information during the core processes of video content
consumption, i.e. during viewing and browsing.

The previously mentioned increased interactivity Web 2.0 offered for the
consumption of video content additionally assisted, through web-oriented
architectures, in exposing content providers’ functionality that other appli-
cations leverage and integrate in order to provide a set of much richer ap-
plications. In order to enhance the effectiveness of these applications, there
is need for extensive studies of large users’ interaction data. To this end,
the design and implementation of controlled users’ experiments has gained

1For a detailed discussion about the complementary character of the two approaches
see [2]
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increasing attention. Indeed, controlled experiments provide sets of data of
(almost) any desirable size under controlled conditions giving thus the pos-
sibility to study specific users’ interaction properties for specific Web con-
tent. Accordingly, Gkonela and Chorianopoulos [8] utilising the SocialSkip
platform [4, 12] collected a pioneering user-based interaction dataset by con-
ducting a controlled experiment during video content consumption providing
a clean set of data that was easier to analyse. The platform integrated cus-
tom interface videos from YouTube with querying form functionalities of the
Google Docs API in order to create an environment that would allow for
video content consumption as well as user querying in order to accumulate
data. Using a modified version of the SocialSkip platform, Spiridonidou et
al. [13] conducted a controlled user-experiment designed and implemented in
order to achieve high degree of realism to the typical contemporary scenario
of web video-streaming services. In this way, the collective behavior of Web
users watching the video content emerged by means of characteristic pat-
terns in their activity leading to collective intelligence as to the importance
of video content solely from users’ interactions with the video player.

The dataset introduced at [8] was based on a set of restrictive assumptions
as to its generality and thus the experiment conducted in [13] adhered to the
following more real-use principles:

• the viewing interface included the controls found in YouTube in order
to simulate realistic user video content consumption,

• content viewing did not have any time limit, again in order to simulate
realistic user video content consumption,

• the questionnaire requested free-text replies in order to ensure that
users declared the scenes they thought of as most important without
interference or guidance,

• the significance of scenes was not predefined, allowing for true collective
intelligence.

Nevertheless, the dataset collected from the experiment conducted in [13]
did not undergo thorough testing in order to show that bell-shaped reference
patterns significantly correlate with user defined scenes of interest in the
video content.
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Moreover, the existence of the aforementioned users’ interaction signal
can provide the basis for new series of metrics in order to study new char-
acteristics of users’ interactions as well as describe the content on which the
interaction took place. Indeed, the aggregated users’ interaction signal is
useful (e.g. for identification of most important scenes), but requires a cer-
tain amount of users having interacted with the content interface in order
to provide for any conclusions. Accordingly, real-use scenarios that refer to
content with little consumption/interaction would not be able to benefit the
methodologies’ capabilities. It is thus required to devise methodologies that
can predict the aggregated users’ interaction signal of the necessary quantity
of users from a set of low quantity early data of users’ interactions.

In the same direction of early interaction prediction, aiming now not at
the previously mentioned aggregated users’ interaction but for a single user’s
interaction, such methods could be valuable in numerous cases such as: to
model the specific user and his/her interaction pattern, to enhance and cus-
tomise associated supportive content of the actual consumed content such
as advertisements or other entities of interactive environments as well as to
adjust content delivery ranging from parameters of the quality of scenes pre-
dicted to be interesting to customised content thumbnailing/summarisation
to customised recommendations. Accordingly, methods are required that pre-
dict a user’s interaction based on other users’ interaction on the same content
as well as a potential small amount of the specific user’s initial interaction.

1.1. Motivation and Contribution

Bearing in mind the aforementioned lack of analysis on the correlation of
the aggregated users’ interaction signal of the datased collected in [13] to bell-
shaped reference patterns as well as the requirements of small user quantity
early interaction prediction both on the aggregated users’ as well as on a
single user’s interactivity level, the contribution of this work is summarised
as follows:

• the verification of the correlation of the dataset collected by Spiri-
donidou et al. [13] to bell-shaped reference patterns indicating user
defined scenes of interest,

• the introduction of a stochastic transformation of the aggregated users’
interaction signal into a space defined by its correlation to the bell-
shaped reference patterns that is shown to offer significant amelioration
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as to the percentage of users’ interaction required in order to achieve
comparable results to the original users’ interaction space,

• the application of neural network time series prediction and modeling
methods for the prediction of a single user’s interactivity signal.

The rest of the paper is organised as follows: Section 2 describes related
work and Section 3 details the user-based experiment this work is based on as
conducted by Spiridonidou et al. [13]. Next, Section 4 presents the methods
used and proposed in order to achieve the contributions of this work, while
Section 5 details experimentation on all three key contributions of the work.
Finally, the paper is concluded in Section 6.

2. Related Work

Research concerning video summarisation and, more generally, important
scene selection in videos has mostly been based on content-based method-
ologies2. Nevertheless, as previously mentioned, such content-based methods
often fail to capture high-level semantics that adhere to non-specialist users’
navigation to videos [8].

In addition to video content, research has also been carried on the users’
actions concerning their viewing and searching processes. Yu et al. [18] pro-
posed that users unintentionally show their understanding of the video con-
tent through their interaction with the viewing system. Their developed algo-
rithm, ShotRank, is computed through a link analysis algorithm that utilises
the voting of users on the subjective significance and “interestingness” of
each shot. Moreover, in addition to user browsing log mining, ShotRank is
also taking into consideration low-level content video analysis.

In their work [14], Syeda-Mahmood and Ponceleon, presentedMediaMiner,
a client-server-based media playing and data-mining system aiming at track-
ing video browsing behavior of users in order to generate fast video previews.
In MediaMiner, users’ interaction with video is recorded at the client side
while gathered information is returned to the server for continuous learning
and estimation of browsing states. Modeling users’ states transition, while
browsing through videos, is done with a Hidden Markov Model. MediaMiner
features common video-browsing interaction buttons (e.g. play and pause)

2Interested readers can refer to [7] for an extensive survey.
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as well as random seek into the video via a slider bar, fast/slow forward and
fast/slow backward.

Gkonela and Chorianopoulos [8], presented a user-centric approach, titled
VideoSkip, wherein by analysis of implicit users’ interactions with a web video
player (e.g. pause, play, thirty-seconds skip or rewind) semantic information
about the events within a video are inferred. Using the simple heuristic
concerning the local maxima identification on the accumulated information
collected from user-activity, VideoSkip has been able to effectively detect the
same video-events, as indicated by ground-truth manually annotated by the
author of the videos.

The work of Karydis et al. [10], in contrast to the hybrid solution pro-
posed to [18], solely relies on user interaction with the player in order to
identify high semantic value video intervals. Contrary to the work in [14],
the approach in [10], utilises a differentiated methodology than a Hidden
Markov Model that does not necessarily require the assumption that the
state of “interestingness” of a user is a function of the previous state of the
user. Moreover, the approach proposed therein examines the information
received from each button of the application separately, offering thus greater
flexibility to the event identification, that the approach adopted in [8].

The work of Spiridonidou et al. [13] extended the work done in [8] by re-
porting on the design, execution and results of a controlled user-experiment
wherein participants were requested to view a video and identify their opinion
on the importance of the scenes viewed in a realistic web-based video content
viewing scenario, based on the interface of prominent video web-streaming
provider. In contrast to the set of restrictive assumptions of the experimen-
tation done in [8], the work of Spiridonidou et al. adhered to more real-use
principles such as use of viewing interface controls found in YouTube, no use
of time limit in content viewing and free-text replies to the questionnaire of
scene importance to users.

3. User-based Experiment

This Section details the experiment conducted under the principles dis-
cussed in Section 1.1.

3.1. Participants

Being delivered through a web application, the experiment did not require
the physical presence of the subjects and thus allowed users to undertake it at
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their own time and location of preference. The dissemination phase included
informing the users of the experiment’s URL link through emails as well as
facebook messages.

Following the received link, users were requested to voluntarily participate
in the experiment the duration of which would not exceed six and a half
minutes to watch the video and then a few minutes answer the questions.
Users were also given simple and concise instructions for both parts of the
experiment through the web interface.

The participants that undertook the experiment were 103 in number,
36 of who were male and 67 female. The age range varied from 17 to 35
years old and all of them were interested in cookery and The Greek Guide
Association. All participants had experience in using the internet and video
streaming services such as YouTube.

3.2. Materials

The experiment, based on the open-source SocialSkip platform, was de-
signed according to the principles discussed in Section 1.

The chosen video for the experiment was required to be interesting to
a lot of people so as to motivate to be viewed by a satisfying number of
participants while additionally was required to be interesting to the selected
participants, again to motivate users’ interactions on the areas they deemed
important.

Thus a set of criteria were identified for the video content selection pro-
cess. Initially, an important criterion on the selection of the content was the
duration of the video that according to the creators’ initial programming of
the Socialskip should not exceed 10 minutes to ensure that will be watched it
until its end. Another key criterion accoding to [4] was the video’s structure
as the less structured it was, the more important the postdata for the fu-
ture viewers would be. Thus, the video should be without montage, that is,
without replay, slow motion or pause from the director. Moreover, the video
should not have areas of increased importance too close to one another. Ac-
cordingly, a video about “Hot Wine” 3 was selected that lasts 6 minutes and
24 seconds and was captured by The Greek Guide Association in Komotini,
Greece.

3http://www.youtube.com/watch?v=EY2Vq4WE-5k
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3.3. Procedure

Before viewing a video, participants were offered a set of instructions as
to the process of the experiment, stating that:

1. You may view this video as many times required but after selecting to
reply to the questions associated, video viewing will not be possible.
Thus, you are advised to memorise the parts of the video that you
found interesting in order to describe these later,

2. You can use the slider while watching the video in any way you want
(back, forward, pause),

3. When sure you have memorised the parts you found interesting press
the link to move to the questions phase.

After the participants had selected to move to the questions phase they
were given the following instructions: “Describe the scenes that you consider
important in the video (indicative number of scenes A, B, C, D, E). Write
your description after you have given the letter of the scene. (ex. A, the scene
where the cooking instructions are given)”. Intuitively, the instructions were
made in this way in order to gather from each user the most important scenes
for them, while receiving unguided postdata.

During the video’s content presentation, the slider was available just un-
der the viewing area allowing the user to randomly navigate through the
content at will. A “pause” button was also available for the participants’
convenience that freezed the video on the current scene it was pressed. The
existence of both these buttons was dictated by the requirement to ensure
realistic and familiar usage to the users. Furthermore, under the viewing
area, the participants could see the total duration of the video as well as the
relative current viewing video time.

Figure 1 shows a snapshot of the application’s interface as shown to users
coupled with the necessary informational instructions in order to ensure the
understanding of the required actions on the users’ side.

4. Proposed Methodology

This Section presents the methods used and proposed in order to achieve
the contributions of this work, namely the users’ activity modeling, the early
aggregated signal prediction as well as the early unique signal prediction
methods.

8



Figure 1: Snapshot of the application’s interface as shown to users.

4.1. User Activity Modeling

Following the methodology presented by Karydis et al. [10] for the user
activity modeling, in order to extract pattern characteristics from the users’
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interaction signal, as provided through the interface of the video content
provider, three distinct stages (as shown in Table 1), are used.

Stage User activity signal processing
1 Smoothness procedure
2 Determination of users’ activity aggregates
3 Estimation of pattern characteristics

Table 1: Overview of the user activity modeling and analysis.

In the first stage, a simple process is used in order to average out user
activity noise in the corresponding distribution. In the context of proba-
bility theory, noise removal can be treated with the notion of the moving
average [15].

Accordingly, from a curve Sexp(t) a new smoother curve Sexp
T (t) may be

obtained as shown in Equation 1,

Sexp
T (t) =

1

T

∫ t+T/2

t−T/2

Sexp(t′)dt′ (1)

where T denotes the averaging “window” in time. The larger the aver-
aging window T , the smoother the curve will be. The procedure of noise
removal of the experimentally recording distribution is of crucial importance
for the following reasons: first, in order to reveal patterns of the correspond-
ing signals (regions of high user’s activity), and second in order to estimate
local maxima of the corresponding patterns. It must be noted that the opti-
mum size of the averaging window T is entirely defined from the variability
of the initial signal. Indeed, T should be large enough in order to average
out random fluctuations of the users’ activities and small enough in order to
avoid distortion of the bell-like localised shape of the users’ signal which will
in turn show the area of high user activity.

In the second stage, aggregates of users’ activity are estimated by means
of an arbitrary bell-like reference pattern, following the intuition that there
is high probability that user’s actions are concentrated at a specific time
interval (the center of the bell) while this probability tends to zero quite
symmetrically while moving away from this interval.

In the third step, the estimation of the pattern characteristics takes place
by application of two different methodologies, a stochastic and a pattern
matching:

10



• In the stochastic approach, as described in [10], the estimation of the
exact locations can be done via the estimation of the generalised local
maxima. The term generalised local maxima refers to the center of the
corresponding bell-like area of the average signal, as the nature of the
original signal under examination may cause more than one peaks at the
top of the bell due to the micro-fluctuation. It was thus shown that this
is possible by estimating the well known correlation coefficient r(x, y)
between the two signals (time series), that is, the average experimental
signal and the reference bell-like time signal.

• In the pattern matching approach, as also described in [10], the distance
of the reference bell-shaped pattern to the accumulated user interac-
tion signal is measured using 3 different distance measures. Initially,
a Scaling and Shifting (translation) invariant Distance (SSD) measure
(Equation 2), is adopted from [5]. Accordingly, for two time series x
and y, the distance d̂SSD(x, y) between the series is:

d̂SSD(x, y) = mina,q

∥x− αy(q)∥
∥x∥

(2)

where y(q) is the result of shifting the signal y by q time units, and ∥ · ∥
is the l2 norm. In this case, and for simplicity, the shifting procedure is
done by employing a window the size of which is empirically calculated
to minimise the distance, while the scaling coefficient α is adjusted
through the maximum signal value in the window context.

The second distance measure used is the Euclidean Distance (ED) mea-
sure (Equation 3) that has been shown to be highly effective [6] in many
problems, despite its simplicity:

dED(x, y) =

√√√√ n∑
i=1

(xi − yi)2 (3)

Finally, the third distance measure utilised is a Complexity-Invariant
Distance (CID) measure (Equation 4) for time series as discussed by
Batista et al. [3]:

dCID(x, y) = ED(x, y)× CF (x, y) (4)
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where the two time series x and y are of length n, ED(x, y) is the
Euclidean distance (Equation 3), CF (x, y) is the complexity correction
factor defined in Equation 5:

CF (x, y) =
max(CE(x), CE(y))

min(CE(x), CE(y))
(5)

and CE(x) is a complexity estimate of a time series X, calculated as
shown in Equation 6:

CE(x) =

√√√√n−1∑
i=1

(xi − xi+1)2 (6)

The aforementioned distance measures produce another time series dist
that describes the distance of the reference bell-shaped pattern to the
accumulated users’ interaction signal and thus requires the identifica-
tion the locations of dist where its value is minimal, indicating a close
match of the reference bell-shaped pattern to the accumulated signal.
To avoid using a simplistic global cut-off threshold the approach incor-
porates a local minima peak detection methodology, where a point in
dist is considered a minimum peak if it has the minimal value, and was
exceeded, to the left of the signal, by a value greater by DELTA, the
peak detection sensitivity value.

4.2. Early Aggregated Signal Prediction

Useful as users’ interaction signals may have been shown for the descrip-
tion of the content these take place on, the phenomenon of cold start can
be a potential problem due to few or none interactions on a set of content
elements that do not allow for systems to draw any safe inferences.

In the case of video content, the explosive degree of such content creation
(“100 hours of video are uploaded to YouTube every minute” according to
[17]) and the ability to have it ready for easy consumption through numer-
ous streaming Web services extend the aforementioned cold-start problem,
requiring thus methodologies that can predict the aggregated users’ inter-
action signal, of the necessary quantity of users, from a set of low quantity
early data of users’ interactions.
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Accordingly, we propose the use of a transformation of the aggregated
users’ interaction signal into a space defined by its correlation to the bell-
shaped reference patterns. The intuition of our proposal is that as these bell-
shaped reference patterns have been shown to highly correlate to the scenes
of the video the users thought of as most important, such a space (hence
“Stochastic space”) represents a qualitative compression of the original space
(hence “Direct space”) of the interactions. Thus, using a representation that
discards noise and focuses on the important segments of the signal will allow
for greater correlation between a partial and full data signal when compared
to the noisy “Direct space”.

In order to derive the proposed transformation, we notice that the arbi-
trary bell-shaped repeating pattern may be expressed by the general relation
of the Gaussian function, i.e. as shown in Equation 7

Sref (t′) = A · e−
(t′−t)2

B , t′ ∈ (t− 2B, t+ 2B) (7)

where t is the center of the Gaussian bell, A is its maximum height and
B is a measure of its width. In detail, for each time instance we define a time
integral (t− 2B, t + 2B) where the correlation coefficient of the signals, the
experimental Sexp and the reference Sref is calculated, using the well-known
relation

Scor(t) = Cov(ST
exp(t), Sref (t))

= E[ST
exp(t) · Sref (t)]− E[Sexp(t)]E[Sref (t)]

(8)

where E(·) is the operator for the mean value. By means of the Equation
8, the stochastic transformation is established: from Sexp

T (t) we derive a new
signal Scor(t) which, according to our proposal, in each time instance will
isolate the noise and enhance the valuable information we search for, i.e. the
existence of bell-like patterns which in turn can be mapped to represent the
existence of users’ interest areas.

The users’ activity modeling and early aggregated signal prediction pre-
processing can be represented in pseudo-code as shown in Algorithm 1. For
the case of the early aggregated signal prediction, only partial users’ activity
is being considered.

Following the methodology previously described in Section 4.1 using the
stochastic pattern for the third step we propose the representation of the
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Algorithm 1 Users’ activity modeling and early aggregated signal prediction
algorithm

Require: Experimental time series Sexp
T (t), upper part of Gaussian time

series Sref
B,A(t) of center t, width B and height A.

1: for t = 1 to L do
2: Sref

B,A(t) {the correlation coefficient for different instance-centers}
3: end for
4: return Sref

B,A(t) {returns the transformed signal}

initial users’ interaction signal from the “Direct space” to the “Stochastic
space”.

4.3. Early Unique Signal Prediction

Much as it is interesting to be able to have a representation of a part of
the full signal in a differentiated space that exhibit increased correlation, the
even partial aggregation of the users’ interactions makes information about
sole users non available.

Having early access to such information/prediction about the future in-
teraction of a specific user, based on interactions of users that have already
completely happened as well as a portion of the user’s at hand interaction,
can be invaluable for numerous tasks. Such tasks could be the modeling
of the specific user and his/her interaction pattern, the amelioration and
customisation of associated supportive content of the actual consumed con-
tent such as advertisements or other entities of interactive environments as
well as the adjustment of content delivery ranging from parameters of the
quality of scenes predicted to be interesting to customised content thumb-
nailing/summarisation to customised recommendations.

Accordingly, we propose the use of a Recurrent Neural Network (RNN)
and especially an architectural approach of RNN with embedded memory, the
“Nonlinear Autoregressive model process with eXogenous input” (NARX)
[9], as shown in Equation 9

j(g) = f(j(g − 1), . . . , j(g − d), x(g − 1), . . . , x(g − d)) (9)

where the next value of the dependent output signal j(g) (user’s interac-
tion signal) is regressed based on d previous values of the same signal and
previous values of an independent (exogenous) input signal x, which, in our
case are the interactions of users that have already happened.
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The NARX network is used for the prediction of a user’s interaction based
on other users’ interaction on the same content as well as a potential small
amount of the specific user’s initial interaction, and is fed with the unique
signal, after the smoothness procedure, of each user that provided answers
to the user-based experiment as observations.

5. Experimental Evaluation

In this Section we present experimentation on all three key contributions
of our work as described in Section 1.1. Initially the experimental set-up is
described, then the results are presented and finally a short summarisation
of the key findings is presented.

5.1. Experiment setup

The experimental setup section is divided on the three key areas of pre-
processing preparations that were required for the experimental evaluation,
namely the users’ interaction signal pre-processing, the users’ collected free-
text quantisation for the definition of the ground-truth with the synthetic five
element signal used in the application of neural network time series prediction
and the modeling methods for the prediction of a single user’s interactivity
signal.

5.1.1. Interaction data processing

Initially, a simple process is used in order to average out user activity
noise in the corresponding collected users’ interaction signal as described in
Section 4.1. Figure 2 depicts the originally received users’ interaction signal,
the users’ activity signal as approximated to a smoothed signal using T = 20
and the ground truth.

It is quite visually evident from Figure 2 that the peaks of the smoothed
aggregated users’ interaction signal coincide with the time segments desig-
nated by users as most important scenes.

5.1.2. Users’ postdata processing

Users’ postdata from the free-text replies on the description of scenes’
significance were collected, processed and based on the textual descriptions
eight scenes were selected as shown in Table 2.

Of the scenes submitted by the users, only five were retained after ex-
clusion of scenes based on users’ link to the video content provider and the
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Figure 2: Users’ activity signal approximated to a smoothed signal using T = 20 with
markup of the duration of scenes deemed important by users.

#
Scene description

Scene
starts at

Scene
ends at

Mentioned
by # users

1
Inaugural - The Greek Guide

Association logo
0 4 31

2 Description of ingredients 48 68 63
3 1st recipe secret: Make it hot (60 ◦C) 74 83 40
4 1st part of recipe preparation 86 118 16
5 Historical information 125 168 39

6
2nd recipe secret: figs in liquor, raisin

skewers on cloves
226 255 49

7 The appearance of Santa Claus 310 325 75
8 Trying the wine 330 346 6

Table 2: Quantised descriptions and time of beginning/ending of important scenes as
submitted by users.

mentions each scene accumulated. Thus, scene 1 was excluded as most ex-
periment participant users were part of the Greek Guide Association that
made the video and thus their association to the first image of the inaugural
scene showing the logo of the Greek Guide Association impacted on describ-
ing the scene as important without regard to the content. Moreover, scenes
4 and 8 referring to the first part of recipe preparation and the tasting of the
produced the wine collected too few mentions.

Additionally, each user and thus the user’s interaction signal was linked
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to a five element signal wherein, based on the scenes that where retained for
the experiment, each element of the signal was assigned an one unit value
(1) if the user had designated the equivalent scene as important or a zero (0)
value otherwise. As not all 103 participants returned free-text description
on their perceived important scenes, but only 76 of them, the association of
the five element signal was only performed for those users that submitted
description of the scenes deemed important.

5.1.3. NARX-based prediction

In the RNN experimentation using the NARX architecture, a dynamic
recurrent NN with feedback connections enclosing several layers of the net-
work, is used containing a varying number of neurons in order to test the
effect of the neuron availability. In addition, the experimentation has also
included the division of the dataset into training, validation of generality,
and testing subsets. In the experiment with the NARX presented herein,
the evaluation of the performance was based on the quantised descriptions
of important scenes as submitted by users formed into a five element signal,
as described in Section 5.1.2.

The learning function used was the Levenberg-Marquardt function while
the performance function was the mean squared error (MSE) performance
function. For each of the parameters examined (number of neurons, division
of the dataset and input/feedback delays) the resulting performance of the
NARX was averaged over multiple runs due to the randomness in the division
of the dataset into training, validation, and testing subsets and in order to
receive high quality results.

5.2. Experiment results

In this section we present the experimental results attained by the estima-
tion of the correlation of the users’ interaction signal to bell-shaped reference
patterns, the signal transformation for the early aggregated signal predic-
tion and finally the RNN Time-series prediction for the early unique signal
prediction.

5.2.1. Users’ interaction signal verification

Following the methodology presented by Karydis et al. [10] for the cor-
relation of the users’ interaction signal to bell-shaped reference patterns in-
dicating scenes of interest we experimented with both the stochastic and
pattern matching approaches described therein.
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As far as the stochastic approach is concerned, the analysis of the users’
activity distributions was based on an exploration of several alternative av-
eraging window sizes. Results of the proposed modeling methodology for the
video content are shown in Figure 3, and in this case, the pulse width D
is 20 seconds and the smoothing window T is 20 seconds. The results are
depicted by means of pulses instead of the bell shapes in order to compare
with the corresponding pulses of the ground-truth designated by the users of
the experiment. The mapping between pulses and bells is based on the rule
that the pulse width is equal to the width between the two points of the bell
where the second derivative changes sign. Moreover, pulse signals were ex-
tracted from the corresponding local maxima indicating time intervals where
aggregates were detected according to the definition given in Section 4.1.

For the stochastic approach, the correlation of the estimated high-interest
intervals and the ground-truth as submitted by the viewers of the video was
calculated at 0.862 indicating very strong correlation between the two pulses.
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Figure 3: Cumulative users’ interaction vs. time including results from stochastic approach
and ground-truth.

The pattern matching approach was examined for each distance measure
as described in Section 4.1. The time intervals of each video, provided by the
cumulative users’ descriptions of scenes’ importance during the experimenta-
tion, once again, constitute the ground-truth, based on which the classifier’s
prediction is evaluated.

Figures 4, 5 and 6 show the achieved precision, recall, specificity percent-
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age & Matthews Correlation Coefficient (MCC) values. The values shown
therein are for varying peak detection sensitivity values for each of the three
distance measures, SSD, ED and CID respectively. It should be noted that
the left y-axis of the Figures depicts precision, recall, F1 score, accuracy and
specificity while the right y-axis depicts only the MCC value. As it can be
seen in Figure 4, the SSD metric achieves an F1 score of 0.7 in a scale of
[0, 1], with 1 being the best value. Nevertheless, F1 score does not take the
true negative rate into account. Thus, the MCC value has been additionally
computed leading to a 0.54 value on a scale of [−1, 1], with 1 implying a
perfect prediction. The claim that the Euclidean Distance is able to perform
relatively high, despite its simplicity, is once again shown in Figure 5 where
ED scored an F1 score of 0.53 and an MCC value of 0.26. Finally, the CID
measure, as shown in Figure 6, was outperformed by the other two measures
having scored an F1 score of 0.57 and an MCC value of 0.35.
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Figure 4: Pattern matching approach, SSD measure: Precision, recall, F1 score, accuracy,
specificity percentage & MCC value.

5.3. Signal Transformation

In order to test the capability of the proposed (as described in Section 4.2)
transformation, all three distance measures described in Section 4.1 were
used. In addition to the aforementioned Scaling and Shifting (translation) in-
variant Distance (SSD), Euclidean Distance (ED) and Complexity-Invariant
Distance (CID) measures, another well-known distance measure was used,
the Dynamic Time Warping (DTW) [1].
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Figure 5: Pattern matching approach, ED measure: Precision, recall, F1 score, accuracy,
specificity percentage & MCC value.
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Figure 6: Pattern matching approach, CID measure: Precision, recall, F1 score, accuracy,
specificity percentage & MCC value.

As it can be seen, from Figures 7, 8, 9 and 10 the distance of partial signals
to the full signals in the stochastic space is in all cases less than the equivalent
distance in the direct space, thus confirming the claim that conversion to the
stochastic space allows for early data processing. This is quite evident in the
cases of the CID and DTW measures where the aggregated signal of 20% of
the users in the stochastic space is as similar as the signal of 70% of the
users both in relation to the aggregated signal of all the users.
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Figure 7: Distance of partial signal to the full in both spaces using the CID measure.
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Figure 8: Distance of partial signal to the full in both spaces using the ED measure.

In other words, this experiment indicates that prediction of the aggre-
gated users’ interaction signal, at the necessary quantity of users, is a possi-
bility. This prediction is derived from a set of low quantity early data of users’
interactions with the use of a transformation of the aggregated users’ interac-
tion signal into a space defined by its correlation to the bell-shaped reference
patterns, the “Stochastic space”. Accordingly, these experiments confirm
our intuition that the bell-shaped reference patterns represent a qualitative

21



10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Percentage of users

S
S

D
 d

is
ta

nc
e

 

 
Direct space
Stochastic space

Figure 9: Distance of partial signal to the full in both spaces using the SSD measure.
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Figure 10: Distance of partial signal to the full in both spaces using the DTW measure.

compression of the “noisy” original space of the interactions.

5.4. NARX NN Time-series Prediction

In order to test the capability of the proposed (as described in Section 4.3)
methodology for the prediction of a user’s interaction based on other users’
interaction on the same content as well as a potential small amount of the spe-
cific user’s initial interaction, we experimented with the number of neurons,
division of the dataset and input/feedback delays of the NARX architecture.
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Figure 11: Regression for varying hidden neurons, input/feedback delay = 1.
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Figure 12: Regression for varying hidden neurons, input/feedback delay = 2.

Figures 11, 12 and 13 show the regression value achieved for varying hid-
den neurons. The regression metric measures the correlation between input
and outputs of the NARX architecture. For each of the input/feedback delay
values the regression attained in all experiments shows an increasing tendency
for increasing number of hidden neurons, while for increasing input/feedback
delay value the regression attained shows again increasing tendency reaching
almost 0.8.
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Figure 13: Regression for varying hidden neurons, input/feedback delay = 3.

These results confirm the intuition behind this experiment, as for increas-
ing input/feedback delay or, in the context of our research more values of the
user at hand, the capability of the NARX to predict the future interactions of
the same user is ameliorating. Nevertheless, even for minimal input/feedback
delay values of unit, the regression value is well above 0.6.

5.5. Discussion

The performance evaluation results can be summarised as follows:

• As far as the correlation of the aggregated users’ interaction signal to
bell-shaped reference patterns is concerned, both the stochastic and
pattern matching approaches indicate that the collected users’ interac-
tion from the user-based experiment by Spiridonidou et al. [13] and
the respective free-text descriptions of the scenes deemed by users as
important exhibit a very high correlation.

• The transformation of the aggregated users’ interaction signal into a
space defined by its correlation to the bell-shaped reference patterns
was shown to offer significant amelioration as to the percentage of users’
interaction required in order to achieve comparable results to the orig-
inal users’ interaction space. Thus, the claim that conversion to the
stochastic space allows for early data processing is supported.
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• The valuable for numerous tasks application of neural network time
series prediction and modeling methods was shown to be fruitful paving
the way for accessible early information about the future interaction of
a specific user based on interactions of users that have already happened
as well as a portion of the user’s at hand interaction.

6. Conclusion

In this work, a controlled user-experiment was utilised in order to iden-
tify the segments of video content participants thought of as most important
by means of registering their interactions with the video interface. The ex-
periment was designed and implemented in order to achieve high degree of
realism to the typical contemporary scenario of web video-streaming services.

Extensive results on the data collected showed high correlation of the
areas (video time segments) that received more interactions from the users
with their free-text submitted replies on what they thought of as important.
In other words, the most important scenes according to the participants of
the experiment, that form the so called “ground truth”, highly coincide with
the patterns emerged in users’ interaction time signal.

In order to ensure the realism of the typical contemporary scenario of
web video-streaming consumption, in terms of how one can predict the most
important scenes from low quantity early data of users’ interactions, a trans-
formation is proposed herein that maps the users’ aggregated interaction
signal based on its correlation to bell-shaped reference patterns. The trans-
formation was shown to offer significant amelioration as to the percentage
of users’ interaction required in order to achieve comparable results to the
original users’ interaction space.

In addition, in order to provide for user-oriented customisation methods
on video content presentation and consumption, given an amount of collected
users’ interaction, we propose the use of a dynamic recurrent Neural Network
for the prediction of the interaction of new users’. The approach proposed is
shown to achieve high correlation between input and outputs.

The existence of a signal (here the signal counts how many times the slider
was located at a specific second) that can carry the information about the
most important video scenes could be a valuable tool for Web applications.
Moreover, the existence of the aforementioned users’ signal can provide the
basis for new series of metrics in order to study new characteristics of users’
interactions. Indeed, the identification of most important scenes is just a
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first order video characteristic. On a higher level, one could search for second
order characteristics: what is the duration of each important scene and how
popular each scene is (there could be more than one popular scenes in each
video but what is their gradation popularity). The above issues can be
addressed in a very rigorous manner since these features can be mapped to
well known functions in standard signal processing theories. These aspects
will be addressed in a future work.
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